002d9ce8-0

002d9ce8-0

] COLLABORATORS
TITLE :
002d9ce8-0
ACTION NAME DATE SIGNATURE
WRITTEN BY August 24, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

002d9ce8-0 iii

Contents

1 002d9ce8-0 1
1.1 AMIPX Manual e e 1
1.2 Disclaimer. e e 1
1.3 Introduction L e e 2
14 Whentouseit i e e e e 2
1.5 Past . . . o e 2
1.6 Present. L 3
1.7 Requirements o it e e e e e e e e e e e e e e e e e 3
1.8 Imstalling AMIPX e e e 4
1.9 Preferences L 4
110 Future o e 5
LIT Credits o o e e e e 5
1.12 AMIPX Applications Programming Interface L 6

002d9ce8-0

1/13

Chapter 1

002d9ce8-0

1.1 AMIPX Manual

AMIPX

IPX compatibility library
by G.J. Peltenburg

~Disclaimer~~~ Who’s involved and who’s not.
Introduction What is it?

~Requirements~ What you need.

~Installation~ It’s so easy...
Preferences For the end user/games player.

When to use it to write networked apps.

API For developers.

Past In case you care...
Present Current functionality.
~Future ~ Planned improvements.
~Credits~ ~~

1.2 Disclaimer

Disclaimer.

AMIPX is freeware; it may be freely distributed for the greater glory of
the Amiga, as long as no files are altered.

Freeware in the case of AMIPX, also includes the right to develop software
that uses it - just in case you were not sure of that.

AMIPX is not in any way related to Novell, neither in support, nor in source
code; this means that any support requests or hate mail involving AMIPX should
be addressed to the author, G.J. Peltenburg, and NOT to Novell.

002d9ce8-0

2/13

We make no warranties, either expressed or implied, with respect to the
software described in this document, its quality, performance, or
fitness for any particular purpose. Any risk concerning it’s quality or
performance is solely the user’s. Should the program prove defective, the
user assumes the entire cost of all necessary servicing, repair, or
correction and any incidental or consequential damages. In no event will we
be liable for direct, indirect or consequential damages resulting from
any defect in the software.

1.3 Introduction

Introduction.

AMIPX is designed to make porting PC games to the Amiga a little easier,
and thus make it a bit more interesting to publish games for the Amiga again.

To achieve this, AMIPX uses a Programming Interface that is very similar to
the PC’s IPX API, and uses the same structures to exchange information between
the application and the library. Some differences remain, though.

1.4 When to use it

When to use AMIPX.

AMIPX is best used for porting PC IPX networking code to the Amiga. It is
NOT the protocol of choice for new games. You should use TCP/IP for those,
since that makes it possible to use the Internet as well as a LAN for playing
head-to-head.

AMIPX does not currently support IPX checksumming, SPX, SAP, or Routers, and
is therefore of little use for serious software (such as Netware clients).

1.5 Past

Late november, 1997:
I decided to write IPX support for the Amiga, after
failing to find existing software say from Novell.

Sending and receiving IPX packets is quite simple on an Amiga, all it
requires is a Sana-II1 device driver, and some knowledge of the way IPX data
is organised. I wrote a program that monitored and sent IPX packets, in less
than two weeks, starting from scratch, and without prior experience with
Sana-ITI.

Making the API almost the same as that of the PC, and putting all that into
a shared library is a lot more work, and it took me some 6 weeks to complete
it.

002d9ce8-0 3/13

18th of january,1998: First Aminet release. Actually took another week due to
Aminet trouble.

29th of january,1998:

Started work on version 1.1. Purpose: to remove AMIPX’ dependency on the
packet filtering function, that seems to be lacking in many Sana-II drivers,
and to make it easier to make future modifications such as multiple network

adapters and internal bridging by AMIPX.

1st of february,1998:
Version 1.1 now sends and receives packets.

2nd of february,1998:

SendTask failed to free its IORequest. Fixed.
Tested with liana.device. Works in this version of amipx.

1.6 Present

What AMIPX currently does:

1) It sends and receives IPX packets and distributes the received packets
to the correct application.

2) It offers almost the same basic API as PC IPX.

What it does not do:
1) Use routers to access other network segments.
2) Support SPX.
3) IPX checksumming.

4) Support other frame types than Ethernet.

1.7 Requirements

AMIPX requires Amiga0S3.0. It may run on 2.04, but that has not been tested.

In addition, it requires a Sana-II network driver. It no longer needs, nor
uses packet filtering.

Also, AMIPX currently only supports Ethernet frame types, and therefore it
does NOT yet work with Arcnet hardware, or point-to-point Amiga to PC networks.

amipx.library will not work without a valid amipx.prefs file in ENV: that
file can be created with the prefs editor included in this distribution.

AMIPX should run on all current 68k processors. No PPC version is planned yet.

002d9ce8-0 4/13

AMIPX coexists with...

AmiTCP/IP - even on the same network adapter. Should be the case with Envoy and
any TCP/IP stack, since the packet types used by IPX differ from
those of TCP/IP.

Tested Sana-II device drivers...

Ariadne.device v1.44 - works fine (my own Ethernet card)

Liana.device vl.4 - works but performance depends on processor. Set frame
type to Ethernet-II and choose two different node
addresses.

Yeah, Jjust two - I’'d like to extend the list, but I need your comments for

that. I/m especially interested in Ethernet driver compatibility - after all,
AMIPX was designed for Amiga to PC networking.

1.8 Installing AMIPX

Told you it was easy:

Step 1: copy amipx.library to your LIBS: drawer.

Step 2: copy amipx_prefs to your Preferences drawer.

Step 3: use amipx_prefs to set up AMIPX for your network.

You may wish to install AMIPX in more than one bootable partition on your
hard drive. If you do, be sure to copy the file amipx.prefs file from ENV:
as well, or to set up AMIPX using the preferences editor after booting from
that other partition.

1.9 Preferences

Basics

AMIPX requires you to set it up with specific information on how to access
the network card, and information on your network, before it can do its
stuff.

Fields

Network number:
Should be set to the IPX network number of your LAN - which is usually 0
in a LAN consisting of a single segment.

Node:

002d9ce8-0

5/13

Used only for network drivers that do not have a default network address.

It must be unique within the segment you are connected to.

Ethernet network cards have their own default addresses, so you will not need
to set this up for those.

Device:
The location and name of the Sana-II network driver to use. Use the ’'?’ button
to pick the driver.

Unit:
The unit number of the network interface to be used with the Sana-II driver -
0 if only one network interface of its type is installed in your computer.

Frame Type:
This determines the makeup of the data part of the packets, and must be set
to the same type as the other computers are using.

Saving or Using the modified preferences

Since AMIPX is a shared library, it is set up when the first application
opens it. At that time, the Sana-II device driver is opened, and the
preferences are read. When the last application closes the library, the
device is closed.

Because of this, depending on the applications running, you may need to

quit them or tell them not to use AMIPX, so that they close the library,
before the new settings take effect. If an IPX application has crashed

(and therefore has not closed the library), rebooting the Amiga is necessary.

1.10 Future

I intend to add the ability to use routers, so you can play over a WAN as well.

I also intend to add support for AMIPX to use more than one network interface.

1.11 Credits

Thanks to:
Maximo Piva for his comments
ClickBoom for their positive response

The late Commodore-Amiga, Inc., for their near-perfect Sana-II standard.

AMIPX was written with Manx Aztec C 5.0, and incorporates its resident
library startup code - not a single assembly instruction was needed.

002d9ce8-0

6/13

How to Contact the author

Email: gpeltenburg@wxs.nl

1.12 AMIPX Applications Programming Interface

AMIPX API

TABLE OF CONTENTS

AMIPX_GetLocalAddress
AMIPX_OpenSocket

AMIPX_ CloseSocket
AMIPX_SendPacket
AMIPX_ListenForPacket
AMIPX_RelinquishControl
AMIPX_GetLocalTarget

ECB description
IPX header description
Additional requirements

NAME
AMIPX_ GetLocalAddress —-- obtain own network address from IPX driver.
SYNOPSIS
AMIPX_GetLocalAddress (addressspace);

a0

VOID AMIPX_GetLocalAddress (BYTE addressspace[1l0]);

FUNCTION

This function copies the full internetwork address into the

array, 1n transmission order.

INPUTS

addressspace - address buffer of at least 10 bytes.

RESULTS
none — it is a simple copy operation

EXAMPLE

NOTES

NAME

supplied

002d9ce8-0 7/13

AMIPX_ OpenSocket —-- open an IPX socket.
SYNOPSIS
actualsocket AMIPX_OpenSocket (requestedsocket);

do do
WORD AMIPX_ OpenSocket (WORD) ;

FUNCTION
This attempts to open a socket with the requested socket number, or
assigns a free socket number if requestedsocket ==

INPUTS
requestedsocket - socket number

RESULTS
actualsocket will be 0 if the socket table is full, or if the requested
socket is already in use.

EXAMPLE
mysock=AMIPX_ OpenSocket (0x869c); // DOOM socket number
if (mysock==0)

panic () ; // socket already in use
NAME
AMIPX_ CloseSocket —-- close an IPX socket.
SYNOPSIS
AMIPX_CloseSocket (socketnumber) ;
do

VOID AMIPX_CloseSocket (WORD) ;

FUNCTION
This closes the socket and cancels any outstanding read requests.

INPUTS

RESULTS
none - socket will be closed if open

EXAMPLE
AMIPX_CloseSocket (mysocknum) ;

NOTES
To cancel outstanding Listen ECBs (read requests), you should close
the socket with this function. You must NOT attempt to manually change
the ECB’s status and subsequently call AMIPX_ ListenForPacket in order
to cancel a read request. If you were to do so, on receipt of a packet
for the socket, innocent memory may be overwritten.

NAME

002d9ce8-0 8/13

AMIPX_SendPacket —-- send an IPX packet.
SYNOPSIS

error = AMIPX_SendPacket (ECB) ;

do a0

WORD AMIPX_SendPacket (struct AMIPX_ECB x);

FUNCTION
This submits a send request to the network card. The call returns
immediately; by checking the ECB’s InUse flag (0 means ready), the
IPX user can see if the packet has been transmitted yet.

INPITS
ECB - pointer to Event Control Block.

RESULTS
error — 0 if all went well.

NOTES
Currently, the only reason why AMIPX_ SendPacket might fail is lack of
memory.

NAME

AMIPX_ListenForPacket —-- Insert ECB in IPX read queue/remove it.
SYNOPSIS

error = AMIPX_ListenForPacket (ECB);

do a0

WORD AMIPX_ListenForPacket (struct AMIPX_ECB «*);

FUNCTION
Inserts ECB in listen queue.
You should initialise the InUse flag of the ECB to 0xld, then call
this function.
The InUse flag can be checked to see if a packet has been received.
InUse will be 0 once a packet has been received.

INPUTS
ECB - pointer to Event Control Block

RESULTS
error — 0 i1if successful.

EXAMPLES

// initialise ECB
myECB.InUse=0x1d;
if (AMIPX_ListenForPacket (&myECB)) // insert in queue
panic(); // out of memory!

002d9ce8-0 9/13

if (myECB.InUse==0) {
// process packet
AMIPX_ListenForPacket (&myECB) ; // insert again
}

NOTES
You must NEVER change the InUse flag of an ECB when it is in the queue.
This call will fail if out of memory, or if the socket has not been
opened.

NAME
AMIPX_ RelingquishControl -- allow for some IPX housekeeping

SYNOPSIS
AMIPX_RelinquishControl () ;
VOID AMIPX RelinguishControl (VOID) ;

FUNCTION
This will allow the IPX library to clean up processed send requests.

INPUTS
RESULTS

EXAMPLES
AMIPX_ RelinguishControl();

NOTES
This cleanup is also performed when any other AMIPX function is
called.

NAME
AMIPX_GetLocalTarget —-- find network address to send a packet to
SYNOPSIS
error = AMIPX GetLocalTarget (internetworkaddress, localtarget);
do a0 al

WORD AMIPX_GetLocalTarget (BYTE internetwaddr[12],BYTE localtargl[6]);

FUNCTION
This function attempts to find the node number on the local network,
to which a packet has to be sent, in order to have it end up
at the requested internetworkaddress. This can be used to find the
router/bridge on the local network, that leads to the target network.
The ImmedAddr field of the ECB can then be filled with the local target.

INPUTS
internetworkaddress - an array of 12 bytes, consisting of network
number (4 bytes), node number (6 bytes) and

002d9ce8-0 10/13

socket number (2 bytes). This is the end address
where you would want your packet to arrive.

RESULTS
error — 0 if successful, nonzero if not found for some reason.

localtarget - an array of 6 bytes, filled in with the node
number of the device on the local network to
which you should send the packet.
EXAMPLES
NOTES

Currently, not really operational, but succeeds if target network
number is equal to that of the amiga, and fails if not.

ECB - Event Control Block

The ECB contains all the information on a Send or Receive request, that is
needed by the IPX library, and it is the ECB, that is the real interface.

FIELDS
ESR - Event Service Routine, see below. Make NULL unless you
provide an ESR.
InUse - will be zero once the ECB has been processed.
CompletionCode - nonzero if an error occurred while processing.
Socket - the number of the socket the request should be queued in.
IPXWork - reserved for internal use, subject to change and sensitive.
DWork - ditto
ImmedAddr - Node address to send the packet to, ffffffffffff for
broadcast.

FragCount - Number of memory fragments that follow.
Fragment [n] - record:

FragData - pointer to buffer

FragSize - size of buffer

Note that in a Send, all fragments are concatenated to form the actual
IPX packet. In this case, the size of the transmitted packet is equal
to the sum of the fragment sizes.

In a Listen, the fragments are filled starting at the first fragment,
and if that is full, the second, and so on. In this case, the total
packet size is only available in the IPX header, since FragCount and
the fragment definitions are not modified by ListenForPacket.

Also note that the ECB is an internal structure, and you must therefore
simply assign all fields without resorting to ’swap’ functions.

Event Service Routine

The ESR 1is an optional pointer to a procedure (i.e. no return value)
that is called when the ecb has been processed.

void (*ESR) (BYTE caller, struct AMIPX_ _ECB =*ecb)
DO A0

002d9ce8-0 11/13

The procedure when called, will have two arguments:

caller - indicates which software calls it - currently only IPX
is supported, indicated by a value of 0Oxff.
ecb - the address of the ecb. The s

Why use multiple fragments?

With multiple fragments, sending and receiving packets will be only a
fraction slower.
The advantage of multiple fragments is: you can split the header
from your own data, by assigning a pointer to a header as fragment O,
and assigning a pointer to your ’'user buffer’ to fragment 1. You can
then access the header and the user data separately. Moreover,
you might make a table of initialised headers, and send the same data
to all of those targets, without modifying a lot of data - all you
need to do is set up the ECBs.

Initialisation

The following fields in the ECB must be initialised before calling
AMIPX_ ListenForPacket:
ESR must be set to NULL, or to the address of a function
to be called once the packet has been processed.

InUse Should be set to 0x1ld on the first call to
AMIPX_ListenForPacket. On subsequent calls, this field
is kept up to date. However, if you use the same ECB for
both listening and sending, you MUST set it to 0xld again
after the send has been processed.

FragCount must be set to the number of memory fragments.
Fragment [n] must contain a pointer to a buffer, and the size of that

buffer.

The following fields in the ECB must be initialised before calling
AMIPX_SendPacket:
ESR must be set to NULL, or to the address of a function
to be called once the packet has been processed.

ImmedAddr must be set to the node address to which the packet is
to be transmitted. In a single segment network, this
is the node-part of the destination address.

FragCount must be set to the number of memory fragments.

Fragment [n] must contain a pointer to a buffer, and the size of that
buffer.

IPX header

002d9ce8-0

12/13

The IPX header, which consists of 30 bytes, is filled by the IPX user, and
contains information such as destination address and source address.

FIELDS
Checksum can contain a checksum for corrupt packet detection,
but does not seem to be used by most software.
This should be set to Oxff,O0xff.

Length holds the total length of the packet,

including the

30 bytes of the header. First byte holds the most
significant bits, second holds the least significant

bits.

Tc may be filled in by IPX - apparently holds the number of
hops (transfers from one network segment to another) it

took to get here.

Type This is the IPX packet type - don’t confuse with frame
type. The packet type should be set to 4 (packet exchange)
although PC DOOM sets it to 0 (unknown packet).

Dst This is the complete internetwork address

socket) of the destination.
network network number, MSB first, 4 bytes.

(network, node,

node network card number, MSB first, 6 bytes.

socket socket number, MSB first, 2 bytes.

Src This is the complete internetwork address

socket) of the sender.

(network, node,

Note that all fields in the IPX header should be defined as bytes or
byte arrays, or that system dependent ’'swap’ functions should be used

to assign or read these values. Although IPX uses the same byte ordering
as the amiga, source code would not be portable to other architectures

if you didn’t.

Also note that, although not required, most games use the same socket
for the source as the target. The reason is of course, that

broadcasting separately to obtain the socket number to send to,

sending to that socket, is a lot more unnecessary work.

Initialisation

Before AMIPX_ListenForPacket, NO FIELDS need to be initialised in the

IPX header.

Before AMIPX_SendPacket, all fields should be initialised (see above),

Tc should be set to O.

Additional requirements

OpenLibrary only by processes
The first task calling Openlibrary for amipx.library,

MUST be a DOS or CLI

process. This is because the first opener, also reads the communications

then

002d9ce8-0

13/13

preferences. Additional tasks may call Openlibrary later, and as long as the
library is open, it will work fine.

First opener and last 'closer’ must have free signalbit

The initial communications between the library and the subtasks is done through
Exec Signals. One is needed at opening time and at closing time. Again, if

your task is NOT the first to open the library, and it is NOT the last to close
the library, this is of no concern. Especially beware of not freeing a signal
if you aren’t sure if your program will be called repeatedly from one CLI.

	002d9ce8-0
	AMIPX Manual
	Disclaimer
	Introduction
	When to use it
	Past
	Present
	Requirements
	Installing AMIPX
	Preferences
	Future
	Credits
	AMIPX Applications Programming Interface

